3.3 \(\int \sqrt{b \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=104 \[ \frac{2 A \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \sqrt{b \sec (c+d x)}}{d}+\frac{2 B \sin (c+d x) \sqrt{b \sec (c+d x)}}{d}-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

[Out]

(-2*b*B*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Ellip
ticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/d + (2*B*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0822444, antiderivative size = 104, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3787, 3771, 2641, 3768, 2639} \[ \frac{2 A \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{d}+\frac{2 B \sin (c+d x) \sqrt{b \sec (c+d x)}}{d}-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(-2*b*B*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*A*Sqrt[Cos[c + d*x]]*Ellip
ticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/d + (2*B*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{b \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=A \int \sqrt{b \sec (c+d x)} \, dx+\frac{B \int (b \sec (c+d x))^{3/2} \, dx}{b}\\ &=\frac{2 B \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}-(b B) \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx+\left (A \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 A \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{d}+\frac{2 B \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}-\frac{(b B) \int \sqrt{\cos (c+d x)} \, dx}{\sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}\\ &=-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 A \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{d}+\frac{2 B \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.119837, size = 73, normalized size = 0.7 \[ \frac{2 \sqrt{b \sec (c+d x)} \left (A \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+B \sin (c+d x)-B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[b*Sec[c + d*x]]*(-(B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]) + A*Sqrt[Cos[c + d*x]]*EllipticF[(c
 + d*x)/2, 2] + B*Sin[c + d*x]))/d

________________________________________________________________________________________

Maple [C]  time = 0.287, size = 453, normalized size = 4.4 \begin{align*} 2\,{\frac{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{2}}{d \left ( \sin \left ( dx+c \right ) \right ) ^{5}}\sqrt{{\frac{b}{\cos \left ( dx+c \right ) }}} \left ( iA{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \cos \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -iB\cos \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) +iB{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \cos \left ( dx+c \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +iA\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) -iB\sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sin \left ( dx+c \right ) +iB{\it EllipticE} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -B\cos \left ( dx+c \right ) +B \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x)

[Out]

2/d*(b/cos(d*x+c))^(1/2)*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))^2*(I*A*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos
(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-I*B*cos(d*x+c)*(1/(cos(d*x+c)+1)
)^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)+I*B*EllipticE(I
*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c
)+I*A*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin
(d*x+c)-I*B*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),
I)*sin(d*x+c)+I*B*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*sin(d*x+c)-B*cos(d*x+c)+B)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec{\left (c + d x \right )}} \left (A + B \sec{\left (c + d x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)),x)

[Out]

Integral(sqrt(b*sec(c + d*x))*(A + B*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)